### References & Citations

# High Energy Physics - Theory

# Title: Poincaré series for modular graph forms at depth two. II. Iterated integrals of cusp forms

(Submitted on 10 Sep 2021 (v1), last revised 21 Sep 2021 (this version, v2))

Abstract: We continue the analysis of modular invariant functions, subject to inhomogeneous Laplace eigenvalue equations, that were determined in terms of Poincar\'e series in a companion paper. The source term of the Laplace equation is a product of (derivatives of) two non-holomorphic Eisenstein series whence the modular invariants are assigned depth two. These modular invariant functions can sometimes be expressed in terms of single-valued iterated integrals of holomorphic Eisenstein series as they appear in generating series of modular graph forms. We show that the set of iterated integrals of Eisenstein series has to be extended to include also iterated integrals of holomorphic cusp forms to find expressions for all modular invariant functions of depth two. The coefficients of these cusp forms are identified as ratios of their L-values inside and outside the critical strip.

## Submission history

From: Oliver Schlotterer [view email]**[v1]**Fri, 10 Sep 2021 17:57:51 GMT (1227kb,A)

**[v2]**Tue, 21 Sep 2021 21:29:01 GMT (1224kb,AD)

Link back to: arXiv, form interface, contact.